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Abstract. In mixed read/write (r/w) workloads, Key-Value stores that
utilize Log-Structured Merge trees face significant write amplification
(WA) due to frequent writing, resulting in extensive data compaction.
While current LSM-based KV stores effectively address WA in write-
heavy workloads, they struggle with increased block cache invalidation
and increased r/w I/O conflicts in mixed r/w workloads. This paper in-
troduces REXIO, a novel indexing approach to reduce WA. It decouples
RAM from Solid State Drives (SSDs) and stores addresses of KV pairs
in the In-RAM hashing table, which reduces buffer invalidations and
eliminates unnecessary data reorganization to lower extra I/Os, thereby
reducing I/O conflicts. Additionally, REXIO stores keys and values in dif-
ferent blocks and employs In-blocking logging to optimize updating and
deleting. The experimental results show that REXIO achieves a 68.3%
reduction of WA and 3.4x throughput compared to state-of-the-art LSM-
Tree approaches.

Keywords: read/write heavy workloads · key-value store · write ampli-
fication

1 Introduction

Nowadays, the proliferation of data-intensive applications results in the crucial
demands of effective large-scale data management [1–5]. Key-Value (KV) stores
are typically used in such applications to enable efficient processing and retriev-
ing of massive amounts of data [6]. Among various KV stores, Log-Structured
Merge (LSM) based KV stores [7] have emerged as a preferred choice for their
superior write performance [8, 9].

However, current LSM-based KV stores encounter a problem that the amount
of data written to disk exceeds the actual data written by users (i.e., WA) [10]
in mixed r/w workloads. For instance, writing 1MB data in a KV store might
result in 5 MB written to disk as data reorganization, exemplifying a write am-
plification factor (WAF) of 5. This problem significantly increases r/w latency



and reduces throughput [11], thus hindering overall data processing efficiency.
In LSM-based KV stores, several strategies such as tiering [12], skipping [13],
and data skew [14] have been explored to reduce WA (For more details, see
Section 2). While LSM-based KV stores efficiently reduce WA in write-heavy
workloads, they still pose two significant challenges for mixed r/w workloads.
First, extensive writing frequently triggers compaction in LSM, which is a read-
merge-sort-rewrite process and occupies massive I/O resources. This compaction
process competes with the I/O requests of reads in such workload [15], increasing
read latency. Second, continuous writes result in numerous block cache invali-
dations in RAM due to the deletion of the original block. As a result, the block
cache associated with the read operation needs to be rebuilt, leading to prolonged
read latency [16].

To address these challenges, this paper introduces an innovative indexing
approach for KV stores called REXIO (i.e., Reduce Extra I/Os). The principle
of REXIO is decoupling RAM from SSD to reduce WA in mixed r/w workloads.
REXIO maintains an extendible hashing table in RAM, which manages the
keys and the corresponding addresses of all KV pairs, facilitating data retrieval
and substantially reducing buffer invalidations. Moreover, the decoupling design
discards re-ordering on-disk data, eliminating unnecessary data reorganization
(such as on-disk data reorganization in LSM trees) to lower extra I/Os (See
definition in Section 3), thereby reducing r/w I/O conflicts. To optimize deleting,
REXIO employs an In-block logging strategy on the SSD, transforming delete
operations into sequential binarycode writes. Additionally, REXIO employs a
policy of storing keys and values separately in different blocks to allow for efficient
updating.

In summary, the contributions of this paper include:

– We propose an indexing approach for KV stores in r/w heavy workloads that
decouples RAM from the SSD, eliminating the extra I/Os.

– We employ an In-RAM hashing table that stores the keys and addresses of
persistent KV pairs to reduce buffer invalidation and avoid data reorganiza-
tion.

– We also introduce the In-block logging within the index, designed to transform
deletions into sequentially writing bianrycode.

– We conduct experiments on an NVMe SSD. The results demonstrate that our
method significantly reduces WA in r/w heavy workloads.

2 Related Work

One way to optimize WA in LSM-based KV stores is to apply tiering to substi-
tute leveling. These can be categorized into two methods: horizontal grouping
and vertical hierarchy [17,18]. Vertical grouping involves distributing data across
multiple parallel tiers, while vertical hierarchy organizes data in a layered struc-
ture. For instance, WB Tree [19] uses hash-partitioning for workload balance and
a B+-tree-like structure for self-balancing, where full nodes merge SSTables into
their child nodes. The LWC-tree [20] uses a similar partitioned tiering design
but adjusts key ranges for workload balance.



PebblesDB [12] uses a partitioned tiering design with vertical grouping to
balance workload by selecting key guards. dCompaction [21] employs virtual
SSTables to minimize merge frequency, triggering actual merges based on specific
thresholds or queries. These four structures described above all share a similar
high-level design based on partitioned tiering with vertical grouping. Zhang et
al. [22] and SifrDB [23] also adopt a partitioned tiering design with horizontal
grouping.

On the other hand, Skip tree [13] employs merge skipping to lift data di-
rectly to higher LSM tree levels, bypassing standard merges to reduce write
costs. This necessitates mutable buffers at each tier to accommodate bypassed
some standard level-by-level merges. Another approach is TRIAD [14], which
separates hot keys from cold keys, efficiently managing hot keys in memory and
using a transaction log on disk. WiscKey [10] offers an separation key from value
solutions, followed by HashKV [24] and SifrDB [23]. It stores KV pairs in an
append-only log, using the LSM-tree as a primary index for mapping keys to
log locations. HashKV extends this by hash-partitioning the value log and inde-
pendently garbage collection each partition, using a group-by operation on keys.
While this separation greatly reduces the WA, it produces greater query latency.

3 Preliminary

We first introduce the symbols in Table 1 used in this paper. Next, we de-
fine mixed r/w workloads in KV stores. In our definition, it consists of two
key operations: W (ki, vi), which writes KV pair (ki, vi), and R(ki), which re-
trieves the value. The ordered sequence of these operations is denoted by O =
op1, op2, . . . , opn, where each opi is either a read or a write. The distribution
of reads and writes is modeled by the function D(i, α), where α represents the
read-to-write ratio.

D(i, α) =

{
1 if i mod

(
1
α + 1

)
= 0

0 otherwise
(1)

This implies that for a read/write ratio of α = 5
5 (i.e., one read for every

write), every 2th operation in 1 is a read, reflecting a frequent interaction pattern
that regularly alternates between read and write operations.

Problem Formulation. Consider a dataset E = {(k1, v1), (k2, v2), . . . , (kn, vn)}
composed of n KV pairs. The total size of the dataset is |E|. In KV stores, the
write amplification factor (WAF) is defined as the ratio between the total amount
of data written to disk and the amount of data written by the user:

A =
Total Data Written to Disk

User Data Written
(2)

The goal of this paper is to minimize A by reducing unnecessary I/Os in
mixed read/write workloads, thereby optimizing write performance.



Table 1: Symbols used in this paper

Symbol Description Symbol Description

A Write amplification Sp/Sb Page size/Block size
ht In-RAM hashing table Nl/Nd The number of log/data pages in a

block
SB Bucket size in hashing table gd Global depth of extendible-hashing
n The number of inserted KV pairs Sk/Sv Size of key/Size of value

4 An Indexing for Reducing Extra I/Os

In this section, we introduce the detailed design of the proposed method, indexing
for Reduce Extra I/Os on Solid State Drives.

4.1 Index Construction

We first present the construction process of REXIO. As shown in Figure 1,
REXIO deviates from tree structure by decoupling RAM and SSD components,
resulting in a streamlined process to reduce extra I/Os caused by operations like
node splits and data reorganization. REXIO begins with organizing data within
RAM using a special extendible hashing table. Unlike extendible hashing, where
the SSD’s page size constrains the bucket size, REXIO’s buckets are not bound
to the SSD’s physical structure. REXIO allows flexible bucket sizing based on
data schema without the need for I/Os during bucket splits.

Data organization in REXIO starts with an extendible hashing table in RAM.
Keys are managed via a shift operation relative to Globaldepth, creating nodes
that include the key, a deletion flag, and a binarycode indicating the KV pair’s
offset. These nodes are inserted into a skiplist within the respective bucket.
Simultaneously, KV pairs are copied to a write buffer managed by RAM, with
offsets dynamically adjusted by a write pointer, thus enhancing data organization
and accelerating index construction without generating dirty data.

It is worth noting that the offset within a node is dynamically determined in
RAM via a write pointer. This write pointer is managed together with a write
buffer. As the write pointer is moved, the offset changes accordingly, allowing
for efficient data organization and fast index construction. In addition, since our
bucket size is not limited by the structure of the SSD, it obviates the necessity
for extra I/Os typically associated with bucket splitting. Consequently, this ap-
proach negates the creation of dirty data within the SSD. The reorganization
process is confined to RAM, streamlining data management.

On the SSD side, REXIO manages data based on logical block addressing
(LBA), which involves a hierarchical structure where multiple LBAs constitute
a page. Several such pages, in turn, form a block.6 This configuration enhances
data organization through a flexible page-block structure. Within RAM, REXIO
capitalizes on this abstraction to optimize SSD resource management, fully ex-
ploiting the SSDs’ sequential writing capabilities to improve efficiency.

6 In this paper, page and block refers to a collection of LBAs



When writing data to the SSD in REXIO, the process is meticulously se-
quential, beginning from the first available page of the first unoccupied block.
This sequential writing strategy is employed to maximize the advantage of SSDs
in handling sequential write operations. By organizing data writes in this way,
REXIO ensures that the SSD’s high-speed sequential I/Os are fully harnessed,
leading to improved write throughput. As the example in the Figure 1 shows, a
block contains two pages. When the buffer in RAM overflows, the data is first
written to page 1, then page 2. At this point, block 1 is full, and then the data
will be written to block 2.
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Fig. 1: Overall design of REXIO.

4.2 Operation Strategies

Insert. The insert process can be summarized through the pseudo-code pre-
sented in algorithm 1. This algorithm outlines the key steps in inserting a data
entry into REXIO. The initial step involves calculating the associated bucket
number in the hashing table using the key, as represented in line 1 of algo-
rithm 1. Subsequently, using the bucket number, the associated skiplist within
that bucket is queried to find the position for inserting the key, as outlined in
lines 4-7 of algorithm 1. After determining the key’s insertion location, if the key
has not been previously added (see lines 15-26), a new node is created within
the skiplist. The node’s flag is set to 1, as shown in line 23, and the binarycode is
provided by the global write pointer. Concurrently, as represented in line 21, the
corresponding data entry is temporarily stored the write buffer. Upon reaching
its threshold capacity, the buffer’s contents are batchly flushed to the SSD. If
the key is located and its associated flag is set to 0 (see lines 12-14), it indicates
that the entry has been previously deleted. In response, the entry is reinserted
into the write buffer. Subsequently, as detailed in line 12, the flag is reset to 1,
and the binarycode is updated. If the key is identified with an accompanying
flag set to 1, as illustrated in lines 9-10, it indicates that the data entry has been
previously inserted. Consequently, the return a valid flag. Figure 2 shows the
whole process of inserting a data entry with key 8. Initially, the key is recorded
in the hashing table. Concurrently, the data entry is written sequentially to the



write buffer, and when the buffer overflows, it is sequentially committed to the
SSD.

Algorithm 1: Insert Algorithm of REXIO

Input: Key, V al
Output: true/flase

1 head←ht[key&(1 c gd)-1]→local;
/* c is left shift */

2 temp = head →next;
3 update[MAX LEVEL];
4 for i=head→level; i≥0; –i do
5 while temp→next[i] && temp→next[i]→key¡key do
6 temp = temp → next[I];

7 update[i] = temp;

8 if temp→key == key then
9 if temp→flag == 1 then

10 return true;
11 else
12 temp→flag =1;
13 temp→binarycode = async write(Key, V al);
14 ++Head→number;
15 return true;

16 else
17 v=RandomLevel();
18 if v > head→level then
19 for i=head→level; i≥v; ++i do
20 update[i] = Head→head;

21 head→level = v;

22 tbinary = async write(hashkey,hashvalue);
23 ++Head→number;
24 new = NodeCreate(key,tbinary,v);
25 for i=0; i≥v; ++i do
26 new → next[i] = update[i]→next[i];
27 update[i]→next[i] = new;

28 return true;

Retrieval. Retrieval is similar to insert: the key is used to compute the
skiplist where the key may be located. If the key is not found or the flag of the
searched node equals 0, then return. If found, read the page from SSD based on
binarycode. In addition, to speed up the data retrieval process, we use an LRU
buffer to cache the retrieved data entries.

Delete and Update. The delete procedure is simple: find the node based
on the key. If the entry has not been deleted, then set the flag to 0, and write
the binarycode into log buffer. The update procedure can be divided into a delete
operation and an insert operation of a new KV pair.
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Fig. 2: An example of inserting operation in REXIO.

4.3 Improvement for Delete

To optimize deletes in REXIO for mixed r/w workloads, it employs In-block log-
ging. This method transforms these operations into more efficient writes, prompt-
ing the speed of the delete operations in REXIO. Specifically, REXIO divides
each block into data and log pages. Data pages are reserved for storing data,
while log pages are dedicated to storing logs, that is, binarycode (We also call it
fixed-length binarycode). The allocation of data and log pages within a block is
not arbitrary. It is crucial to ensure that alongside the data pages for incoming
data, there is a sufficient reserve of log pages to accommodate the deletion logs.
To strike this balance, we pre-calculate the required number of each page type in
a block, leveraging Equation 3 for precise allocation between log and data pages.
Ndata and Nlog denote the number of data pages and log pages, respectively, in
a block, Bb denotes the size of binarycode, and n denotes the total amount of
data that will be written to this block.

n =
Nd · Sp

Sv
, Sp · (Nd +Nl) = Sb, n ·Bb = Sp ·Nl (3)

In addition, we observe that employing fixed-length binarycode (FLB) results
in suboptimal space utilization, mainly when dealing with comparatively large
key and value sizes. Consequently, we have adopted a variable length binarycode
(VLB) approach to mitigate space wastage further. Specifically, our approach
is to calculate the number of the data in the block based on the page number
and in-page offset and then convert the number into a variable byte binarycode,
i.e., the highest bit of each byte is used as the marker bit. When the marker
bit is 0, the subsequent 7 bits of the next byte pertain to the same data entry.
Conversely, when the marker bit is set to 1, it indicates the termination of a
binarycode. To calculate the number of log pages and data pages in a block with
VLB, we can use a simple statistic that counts the binarycode of each data (key
or value) to be written to the block. When

∑n
i=1(B

i
vb + Sd) ≥ Sb (Bi

vb denotes
the size of the VLB of the ith data written to the block), it means that the block
is full, and the next write operation will be to a new block.

4.4 Improvement for Update

Reflecting on the asymmetry in key-value updating, which means values fre-
quently undergo modifications while their corresponding keys remain unchanged.



We propose a strategy for storing keys and values separately in SSD, inspired
by Wisckey [10]. The design reduces WA and optimizes updates by avoiding un-
necessary key rewriting. REXIO partitions the blocks into key and value blocks.
While key blocks are allocated for storing both keys and associated logs, value
blocks are dedicated to holding values and corresponding logs. Within a block,
pages are divided into data and log pages. When a value within a KV pair is
updated, REXIO initiates a series of operations to ensure data integrity and
accuracy. The process begins with REXIO searching for the corresponding node
in RAM using the key. If the node is successfully located and its flag is set to
1 (indicating that the value is valid). Concurrently, a deletion log for the old
value is created. The new value and this deletion log are then written to the
value block where the old value was previously stored. Following the update, the
binarycode corresponding to the key in RAM is updated to reflect the recent
changes.

4.5 Crash Recovery

In the event of a system (process) crash, REXIO undergoes a critical recovery
process. Upon restart, REXIO scans the entire SSD to identify all key blocks.
The data from the data pages in these key blocks is then read into RAM to
rebuild the In-RAM hashing table. Subsequently, the log pages from the key
blocks are used to perform the required redo operations to restore the extendible
hashing table to its pre-interrupt state. Finally, the block buffers are initialized,
and any unflashed data is rewritten to these buffers.

For space complexity, suppose inserting n KV pairs. For every stored key, we
also need to store an address value location in VLB. We use ⌈b/7⌉ to compute
the address, b is the binarycode representing the location of the value. Then the
space upper bound of n KV pairs is:

S(n) = n× (Se + ⌈Se/7⌉+ ⌈b/7⌉) (4)

This also is a linear trend with the amount of data inserted.

5 Performance Evaluation

In this section, we evaluate the performance of REXIO by comparing it with
other KV stores. Our goal is to evaluate the performance of REXIO for WA in
a write-heavy workload and in a mixed r/w workload.

5.1 Experiment Setup

Settings. Our experiments are conducted on a Huawei server with a 40-core
Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60GHz and bolstered by 256GB of RAM.
The server, running Ubuntu 20.04.4 LTS with Linux kernel 5.4.0-122-generic on
x86 64, is equipped with a Samsung 980 SSD, which offers maximum sequential
read and write speeds of 3500 MB/s and 3000 MB/s, respectively. The SPDK
v21.01 [25] is used in REXIO for I/O management. The source code of our
implementation is provided in Github7.

7 https://github.com/Zizhao-Wang/REXIO

https://github.com/Zizhao-Wang/REXIO


In REXIO, we configure the page size to 64KB, corresponding to the size
of the write buffer. Additionally, we set the block size as 512KB and allocate
32MB for the LRU buffer. Other KV stores in our experiment retain their default
parameter configurations for comparative analysis.

Test Methods and DataSet. To evaluate the performance of REXIO in
mixed r/w workloads and write-heavy workloads, we compare our approach with
three categories of LSM-based KV stores introduced in [26]: SifrDB [23], repre-
senting horizontal tiering ; WipDB [27], embodying vertical tiering approaches;
the widely-recognized LevelDB (v1.21) [28] and RocksDB (v8.10), serving as
classic implementations of leveling in LSM tree. We use the db bench [28] to
generate a 268GB dataset for the write-heavy workload. The mixed r/w work-
load with 134GB is generated similarly to YCSB [29].

5.2 Write Amplification Analysis

We evaluated the WAF across different KV stores by writing 2 billion KV pairs
(268 GB). As shown in Figure 3a, the horizontal axis represents the number of
pairs in billions, while the vertical axis indicates the WAF.

WipDB’s WAF peaks at 3.25, around 1.6 billion KV pairs, then slightly
decreases. SifrDB’s WAF steadily rises, stabilizing at around 5.70. LevelDB and
RocksDB’s WAFs progressively increase to 14.99 and 12.60, respectively. REXIO
consistently maintains the lowest WAF, decreasing from 1.04 to 0.98 (a 68.3%
reduction of WipDB) as data volume increases. REXIO’s WAF is less than 1
because it stores key and value separately. With the increase of duplicate data,
REXIO update data only needs to write the new value and binarycode old value.
Moreover, as the value size increases, the size of the VLB in REXIO decreases.

Next, we examined the impact of varying value sizes, as shown in Figure 3b.
The x-axis denotes value size in bytes, and the y-axis measures the WAF. For
LevelDB and RocksDB, WAF decreases as value size increases, aligning with
their leveling compaction methodology, which writes fewer KV pairs for larger
values. SifrDB’s WAF initially decreases with larger values but stabilizes around
4.9, indicating limited optimization. WipDB’s WAF decreases to a minimum of
2.858 at a 512-byte value size before increasing again. This stabilization and
subsequent rise in WAF, along with increased latency for larger values, suggest
that while SifrDB and WipDB handle smaller values efficiently, they are less
optimized for larger sizes. REXIO consistently maintains a low WAF that de-
creases slightly with increasing value sizes, demonstrating its efficiency across
various sizes.

Finally, we analyzed WAF in relation to key ranges in Figure 3c. WipDB
improves its I/O efficiency, with WAF decreasing from 3.16 to 2.67 as the key
range narrows to 1/8, indicating more efficient compaction. SifrDB’s WAF de-
creases slightly to 4.90 as the key range quarters, then stabilizes. LevelDB’s WAF
decreases from 14.98 to 12.07 with reduced key ranges, and RocksDB shows a
similar trend, dropping from 12.6 to 9.95. The reduction in WAF with narrower
key ranges may be due to potential in-memory merging. REXIO consistently
maintains a low WAF, demonstrating its robustness and efficiency across vary-
ing key ranges.



Following the analysis of WAF across dataset size, value sizes, and key ranges,
we turn our attention to the throughput capabilities of the evaluated KV stores.
Figure 3d illustrates the throughput results (268GB dataset with 2KB value),
with the horizontal axis specifying the KV stores and the vertical axis quantify-
ing the throughput in terms of thousands of operations per second (Kops/sec).
The histogram distinctly illustrates that REXIO towers over its competitors,
achieving a throughput of approximately 123.66 Kops/sec when writing a sub-
stantial 268.2 GB dataset. WipDB, while lagging behind REXIO, still manages
a respectable throughput of 27.40 Kops/sec. On the other hand, LevelDB and
RocksDB have similar throughputs of 6.98 Kops/sec and 6.44 Kops/sec, respec-
tively. SifrDB has the lowest throughput of 3.58 Kops/sec. This stark contrast
in throughput performance suggests that REXIO’s mechanisms can have better
performance for handling large-value writes.
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Our experimental spanning dataset size, value size variations, and key range
considerations demonstrate REXIO’s performance in write-intensive workloads.
The result also reveals REXIO’s efficiency in minimizing the WAF while main-
taining high throughput.



5.3 Performance in r/w Heavy Workload

We then evaluate the performance of all KV stores under a r/w heavy workload.
Figure 4a illustrates the relative throughput retention as the ratio of the r/w
changes, while Figure 4b presents the actual throughput figures across the same
r/w spectrum.

For WipDB, starting retention of 0.35% in read-intensive conditions has a
notable decline across all r/w ratios, barely maintaining 0.15%. SifrDB demon-
strates an initial 46.0% retention, a dip to 31.0% in mixed r/w operations, and
a recovery to 49.0% as write operations intensify. LevelDB exhibited an initial
data retention rate of 53.0%, which then experienced a pronounced decline be-
fore stabilizing at approximately 1.5%. A similar pattern emerged in RocksDB,
demonstrating an initial retention of 36.0% and tapered to an eventual 1.0%. We
can see that as the r/w ratio gradually increases, especially at the most intensive
r/w condition(i.e., ratio is 5:5), the throughput of LSM-based KV stores drops
to a minimum. Throughput retention of REXIO dropped to a low of 40%. As the
r/w ratio gradually changes, his throughput retention gradually increases, even-
tually reaching 80%. This situation is because read operations are very intensive
at this time as they are time-consuming. Although REXIO and SifrDB show
a similar trend, REXIO is different from the LMS-based KV store in principle.
Increasing the LRU buffer ’s size, REXIO will bring a more intuitive effect on the
improvement because of the decoupling design. However, due to the compaction
in LSM-based KV stores, other methods may only bring a slight improvement
when increasing the buffer size.

Regarding throughput, REXIO starts with 80 Kops/sec in a 1:9 r/w and 81
Kops/sec in a 9:1 w/r. REXIO’s high initial throughput is attributable to its
capacity to ascertain the existence of KV pairs directly within RAM, thereby
circumventing the need for extra I/Os. As the written data increas, most data
have been written to the SSDs, leading to a diminished retention rate for REXIO.
Despite this reduction, REXIO’s retention rate remains better than other LSM-
based KV stores, and its absolute throughput surpasses SifrDB’s 3.4x when the
r/w ratio is 5:5.

6 Conclusion

This paper introduces REXIO, a novel approach designed to significantly reduce
WA in r/w heavy workloads for KV stores. At the heart of REXIO is the inno-
vative RAM-SSD decoupling strategy, complemented by our unique binarycode
logging technique. The logging technique uniformly transforms all operations in
the KV store into sequential writes, particularly optimizing delete and update
operations through binarycode conversion. This design simplifies the data struc-
ture and I/O management in SSD-based KV stores, leading to a substantial
reduction in WA by minimizing I/Os.
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