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The key value (KV) store on SSD 1s now facing a serious problem: /O amplification.

Can we modify existing LSM-trees employed in KV store to solve this problem?
® An intrinsic compaction process used in LSM trees
® |t can be somewhat reduced(WiscKey, Partitioning, etc.)

How to reduce I/O amplification while accessing data efficiently?


主持人笔记
演示文稿备注
Key-value (KV) store [4], particularly built-on Log-Structured Merge (LSM) Trees [6], serve as storage infrastructure across various applications.

The popularity of LSM-based KV stores Trees primarily stems from their efficiency in handling a high volume writes by leveraging multi-level merging and batch writing. Its significantly outperform traditional B-trees [7] and hashing [8] by reducing I/Os, thereby enhancing performance and diminishing storage overhead. 
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Overall architecture of NEXIO one-time 1/O operation

* RAM-disk decoupling, eliminating the need for RAM to mirror the disk‘s storage structure.

* Maintain physical addresses of each KV pair in RAM.

* In-block logging is employed to transform delete and update operations into sequentially write binarycode.
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Improved method: VLB + Separate storage of key and value

* Variable length binarycode " Binarycode: 0X [pORo00 16001 o
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» Separate storage of key and value |

Storing keys and values in different
physical blocks in the SSD
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€ WAF Across Data Sizes:

Ptttk et e *WipDB: Peaks at 3.25 WAF around 1.6 billion KV pairs, then slightly decreases.

1 o "’”*’:j '\\ e - *SifrDB: WAF steadily rises, stabilizing at 5.70.
[ o = ;" — *LevelDB & RocksDB: WAF progressively increases to 14.99 and 12.60, respectively.
FR A A *REXIO: Maintains the lowest WAF, decreasing from 1.04 to 0.98 (68.3% lower than
f s f 3 WipDB), due to separate key-value storage.
P IR D — D — .

€@ WAF Across Value Sizes:
BN . . *LevelDB & RocksDB: WAF decreases as value size increases, reflecting their compaction
- " b o-st S;f(Bi-‘ﬁ“::fK")”)l-‘ : N b l Kev Range (Frac:;)n of Total Kevs) - 256 Value S-::(BWSJ o > Strategy.
*SifrDB: Initially decreases but stabilizes around 4.9.
*WipDB: Drops to 2.858 at 512-byte values before increasing again, showing inefficiency
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REXIO mmmm  WipDB LevelDB W ifiDB MM RocksDB M with larger values. o o o
160 | | | | | *REXIO: Consistently maintains low WAF, decreasing slightly as value sizes increase.
140 = 123 66 7 4@ WAF Across Key Ranges:
120 - B *WipDB: WAF decreases from 3.16 to 2.67 as key range narrows, improving I/O efficiency.
e *SifrDB: Slight decrease to 4.90, then stabilizes.
2 100 - N *LevelDB & RocksDB: WAF decreases to 12.07 and 9.95 with narrower key ranges.
:%, 20 L i *REXIO: Maintains consistently low WAF, showing robustness across varying key ranges.
2 60 - - 4@ Throughput Comparison:
= *REXIO: Achieves the highest throughput at 123.66 Kops/sec when writing a 268.2 GB
40 7 2740 | dataset.
20 - 624 35 6.98 . *WipDB: Manages 27.40 Kops/sec, significantly behind REXIO.
' o *LevelDB & RocksDB: Similar throughputs of 6.98 Kops/sec and 6.44 Kops/sec,
0 _ - respectively.
REXIO WipDB RocksDB SifrDB LevelDB

SifrDB: Lowest throughput at 3.58 Kops/sec.

Key-Value Stores
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€ WipDB Throughput Retention:
 Initial retention of 0.35% 1n read-intensive conditions, dropping significantly
across all r/w ratios, maintaining just 0.15%.

@ SifrDB Throughput Retention:
* Initial retention of 46%, dropping to 31% in mixed r/w operations, recovering to
49% as write operations increase.

@ LevelDB and RocksDB Throughput Retention:
[ evelDB: Starts at 53%, declines, and stabilizes around 1.5%.
*RocksDB: Starts at 36%, eventually dropping to 1%.

€ REXIO Throughput Retention:
*Drops to 40% in the most intensive 5:5 r/w condition, then increases gradually,
reaching 80%.

€ Analysis:
Intensive read operations consume more time, impacting throughput retention.
*REXIO’s decoupled design makes buffer size increases more effective compared
to LSM-based KV stores.

€ Throughput Comparison:
*REXIO starts with 80 Kops/sec in 1:9 r/w ratio and 81 Kops/sec in 9:1 w/r ratio.
*REXIQO’s absolute throughput 1s 3.4x higher than SifrDB at a 5:5 r/w ratio.

*Conclusion: REXIO’s mechanisms show superior performance, especially with large-value writes.
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