
REXIO: Indexing for Low Write Amplification by Reducing Extra
I/Os in Key-Value Store under Mixed Read/Write Workloads

Speaker: Zizhao Wang

Authors: Zizhao Wang, Qiang Qu, Nan Han, Zhelang Deng, Yizhuo Ma, Xiaowen Huang, Jintao Meng*

Date: 5, December, 2024

Background and motivation

The key value (KV) store on SSD is now facing a serious problem: I/O amplification.

Can we modify existing LSM-trees employed in KV store to solve this problem?
 An intrinsic compaction process used in LSM trees
 It can be somewhat reduced(WiscKey, Partitioning, etc.)

How to reduce I/O amplification while accessing data efficiently?

主持人笔记
演示文稿备注
Key-value (KV) store [4], particularly built-on Log-Structured Merge (LSM) Trees [6], serve as storage infrastructure across various applications.

The popularity of LSM-based KV stores Trees primarily stems from their efficiency in handling a high volume writes by leveraging multi-level merging and batch writing. Its significantly outperform traditional B-trees [7] and hashing [8] by reducing I/Os, thereby enhancing performance and diminishing storage overhead.

Proposed method: REXIO

We propose an indexing approach for
KV stores in r/w heavy workloads that
decouples RAM from the SSD,
eliminating the extra I/Os.

We employ an In-RAM hashing table
that stores the keys and addresses of
persistent KV pairs to reduce buffer
invalidation and avoid data
reorganization.

We also introduce the \textit{In-block
logging} within the index, designed to
transform deletions into sequentially
writing \textit{bianrycode}.

We conduct experiments on an NVMe
SSD. The results demonstrate that our
method significantly reduces WA in r/w
heavy workloads.

Workflow: An inserting case

• RAM-disk decoupling, eliminating the need for RAM to mirror the disk‘s storage structure.

• Maintain physical addresses of each KV pair in RAM.

• In-block logging is employed to transform delete and update operations into sequentially write binarycode.

Overall architecture of NEXIO one-time I/O operation

……0

……1

Gd=1 RAM

1 9 17 NIL

NIL

97

……0

……1

Gd=1

1 9 17 NIL

NIL

97

RAM
Insert 8

8

SSDHost

0x1
0x0

log Buffer write Buffer

8

LRU Buffer

97
1,9,17

1
0

Plane0 Plane1

Page0

1 9
17

Page1

97

Abstract Block

Plane2 Plane3

VLB + Separate storage of key and value

• Variable length binarycode

Using the highest bit as a marker:
'0' extends the data entry;
'1' ends the binary code.

• Separate storage of key and value

Storing keys and values in different
physical blocks in the SSD

Improved method: VLB + Separate storage of key and value

Results

 WAF Across Data Sizes:
•WipDB: Peaks at 3.25 WAF around 1.6 billion KV pairs, then slightly decreases.
•SifrDB: WAF steadily rises, stabilizing at 5.70.
•LevelDB & RocksDB: WAF progressively increases to 14.99 and 12.60, respectively.
•REXIO: Maintains the lowest WAF, decreasing from 1.04 to 0.98 (68.3% lower than
WipDB), due to separate key-value storage.

 WAF Across Value Sizes:
•LevelDB & RocksDB: WAF decreases as value size increases, reflecting their compaction
strategy.
•SifrDB: Initially decreases but stabilizes around 4.9.
•WipDB: Drops to 2.858 at 512-byte values before increasing again, showing inefficiency
with larger values.
•REXIO: Consistently maintains low WAF, decreasing slightly as value sizes increase.

 WAF Across Key Ranges:
•WipDB: WAF decreases from 3.16 to 2.67 as key range narrows, improving I/O efficiency.
•SifrDB: Slight decrease to 4.90, then stabilizes.
•LevelDB & RocksDB: WAF decreases to 12.07 and 9.95 with narrower key ranges.
•REXIO: Maintains consistently low WAF, showing robustness across varying key ranges.

 Throughput Comparison:
•REXIO: Achieves the highest throughput at 123.66 Kops/sec when writing a 268.2 GB
dataset.
•WipDB: Manages 27.40 Kops/sec, significantly behind REXIO.
•LevelDB & RocksDB: Similar throughputs of 6.98 Kops/sec and 6.44 Kops/sec,
respectively.
•SifrDB: Lowest throughput at 3.58 Kops/sec.

Results

WipDB Throughput Retention:
• Initial retention of 0.35% in read-intensive conditions, dropping significantly

across all r/w ratios, maintaining just 0.15%.

SifrDB Throughput Retention:
• Initial retention of 46%, dropping to 31% in mixed r/w operations, recovering to

49% as write operations increase.

LevelDB and RocksDB Throughput Retention:
•LevelDB: Starts at 53%, declines, and stabilizes around 1.5%.
•RocksDB: Starts at 36%, eventually dropping to 1%.

 REXIO Throughput Retention:
•Drops to 40% in the most intensive 5:5 r/w condition, then increases gradually,
reaching 80%.

Analysis:
•Intensive read operations consume more time, impacting throughput retention.
•REXIO’s decoupled design makes buffer size increases more effective compared
to LSM-based KV stores.

Throughput Comparison:
•REXIO starts with 80 Kops/sec in 1:9 r/w ratio and 81 Kops/sec in 9:1 w/r ratio.
•REXIO’s absolute throughput is 3.4x higher than SifrDB at a 5:5 r/w ratio.

•Conclusion: REXIO’s mechanisms show superior performance, especially with large-value writes.

	�REXIO: Indexing for Low Write Amplification by Reducing Extra I/Os in Key-Value Store under Mixed Read/Write Workloads
	幻灯片编号 2
	幻灯片编号 3
	幻灯片编号 4
	幻灯片编号 5
	幻灯片编号 6
	幻灯片编号 7
	Thank you for your listening!

