University of Chinese Academy of Sciences rrussnssannk

REXIO: Indexing f
I/0s in Key-Ve

Speaker: Zizhao Wang

Authors: Zizhao Wang, Qiang Qu, Nan Han, Zhelang Deng, Yizhuo Ma, Xiaowen Huang, Jintao Meng*
Date: 5, December, 2024

- =

“|IIII|I

| - ol
— -

GR) YO 7TRX T

@ University of Chinese Academy of Sciences

The key value (KV) store on SSD 1s now facing a serious problem: /O amplification.

Can we modify existing LSM-trees employed in KV store to solve this problem?
® An intrinsic compaction process used in LSM trees
® |t can be somewhat reduced(WiscKey, Partitioning, etc.)

How to reduce I/O amplification while accessing data efficiently?

主持人笔记
演示文稿备注
Key-value (KV) store [4], particularly built-on Log-Structured Merge (LSM) Trees [6], serve as storage infrastructure across various applications.

The popularity of LSM-based KV stores Trees primarily stems from their efficiency in handling a high volume writes by leveraging multi-level merging and batch writing. Its significantly outperform traditional B-trees [7] and hashing [8] by reducing I/Os, thereby enhancing performance and diminishing storage overhead.

()] Proposed method: RE @ teasmxy

University of Chinese Academy of Sciences

Globaldepih=3 e \. : :
00 — ' (Page , 24(11000) ' Block, ; € We propose an indexing approach for
""" | 26(11010) | Blockid: 0x0001 | :
ol 25(11100) | Pageid: 0x0001 | KV stores in r/w heavy workloads that
""" 5 ’ decouples RAM from the SSD,
...... 010 o Ce
‘ “ 1 T Pages yooon eliminating the extra I/Os.
...... 011 ! 16((10000)) Blockid: 0x0001
o Lt 20(10100) Pageid: 0x0002 |
------ 00| o ————————————stoa o € We employ an In-RAM hashing table
------ 101 | | Page, Block, ; that stores the keys and addresses of
e No dat . a - :
------ 110 ; o Eoatih (U persistent KV pairs to reduce buffer
b | Pageid: Ox :
...... 111 invalidation and avoid data
RAM | Buffer SSD reorganization.
Globaldepth=3 . .
, ; 4 € We also introduce the \textit{In-block
— _] R T logging} within the index, designed to
...... odeNum g "2 > 41 — "| 57 o7 7] NIL . . .
>~ P B e —,[3] &l [|0 . transform deletions into sequentiall
‘\\ ! key: 97 :
------ 010 Depi , J B A oo R ; W ezl o0 writing \textit{bianrycode}.
NodeNum -. 11— 27 || W 43 — 59 | "l 83 NIL : binarycode:
...... 011 CurLevel | 1.3 1] |» > >L67] L S
. D T . H . J o H e N B P .~ @ We conduct experiments on an NVMe
...... NodeNum 14— 30 | | % 16 |— . 62 L 04 | NIL g | key: 94 |
» Gurtewt 16 |] 2L [' g et i SSD. The results demonstrate that our
. I S > | 0XO0010FF 1011 i
______ T e e e te e | S method significantly reduces WA in riw
auEEIE 79[heavy workloads.
...... 111
RAM part

13 Workflow: An insert @ teaTmxy

University of Chinese Academy of Sciences

—Ga=r RAM! { =g [ox0: || [P lane, Plane, Plane, Plane,
...... 0 NIL 0 0xl
TONIL T _— 4
""" L1 v 17 =97 — A — — — —
""""""""""""""""""""""""""" Tsert 8 s wrzteBuﬁerlogBuﬁer —
""" Gd=] T e e L 0 1,907
o RAME gy
,,,,,, 0 b NIL - ; . ' 19 97
> > | : :- _________ —> L 17
...... I b1l 49 w17 —97 —NL T — || Page, Page
__ . LRU Buffer Abstract Block
Host SSD

Overall architecture of NEXIO one-time 1/O operation

* RAM-disk decoupling, eliminating the need for RAM to mirror the disk‘s storage structure.

* Maintain physical addresses of each KV pair in RAM.

* In-block logging is employed to transform delete and update operations into sequentially write binarycode.

13 VLB + Separate storag @B TahTRRS

University of Chinese Academy of Sciences

Improved method: VLB + Separate storage of key and value

* Variable length binarycode " Binarycode: 0X [pORo00 16001 o
& ty | 000 6‘?0 .1 0000 0000 0000 0000 0000 0011 0000 0000 :

. . . . : B __H}_ - i——bi) g, i
Using the highest bit as a marker: " [90000000}0606006000' noolwoooggqq ' o] v o
'0' extends the data entry; D 12:bit | 0000 0110;1:000 0000 Flag bit |
'"1' ends the binary code | Block number: 0 Page number: () In-Page oﬁ%ez‘_ 768 ,: :\ S . ‘___:=:==="' ,:
Fixed Length Binarycode (FLB) Variable Length Binarycode (VLB)

» Separate storage of key and value |

Storing keys and values in different
physical blocks in the SSD

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
L

Y ——

()4 Results @ tanwrxsy

University of Chinese Academy of Sciences

€ WAF Across Data Sizes:

Ptttk et e *WipDB: Peaks at 3.25 WAF around 1.6 billion KV pairs, then slightly decreases.

1 o "’”*’:j '\\ e - *SifrDB: WAF steadily rises, stabilizing at 5.70.
[o = ;" — *LevelDB & RocksDB: WAF progressively increases to 14.99 and 12.60, respectively.
FR A A *REXIO: Maintains the lowest WAF, decreasing from 1.04 to 0.98 (68.3% lower than
f s f 3 WipDB), due to separate key-value storage.
P IR D — D — .

€@ WAF Across Value Sizes:
BN . . *LevelDB & RocksDB: WAF decreases as value size increases, reflecting their compaction
- " b o-st S;f(Bi-‘ﬁ“::fK")”)l-‘ : N b l Kev Range (Frac:;)n of Total Kevs) - 256 Value S-::(BWSJ o > Strategy.
*SifrDB: Initially decreases but stabilizes around 4.9.
*WipDB: Drops to 2.858 at 512-byte values before increasing again, showing inefficiency

=]
=]

=)
=

REXIO mmmm WipDB LevelDB W ifiDB MM RocksDB M with larger values. o o o
160 | | | | | *REXIO: Consistently maintains low WAF, decreasing slightly as value sizes increase.
140 = 123 66 7 4@ WAF Across Key Ranges:
120 - B *WipDB: WAF decreases from 3.16 to 2.67 as key range narrows, improving I/O efficiency.
e *SifrDB: Slight decrease to 4.90, then stabilizes.
2 100 - N *LevelDB & RocksDB: WAF decreases to 12.07 and 9.95 with narrower key ranges.
:%, 20 L i *REXIO: Maintains consistently low WAF, showing robustness across varying key ranges.
2 60 - - 4@ Throughput Comparison:
= *REXIO: Achieves the highest throughput at 123.66 Kops/sec when writing a 268.2 GB
40 7 2740 | dataset.
20 - 624 35 6.98 . *WipDB: Manages 27.40 Kops/sec, significantly behind REXIO.
' o *LevelDB & RocksDB: Similar throughputs of 6.98 Kops/sec and 6.44 Kops/sec,
0 _ - respectively.
REXIO WipDB RocksDB SifrDB LevelDB

SifrDB: Lowest throughput at 3.58 Kops/sec.

Key-Value Stores

(11 Results

90%

Retention Percentage of Throughput

tJ L5 E= Lh [=} ~] [r.2]
= = = = = = =
S 5 2 2 £ § 3

._.
2
S

90

80

70

60

50

40

Throughput (Kops/sec)

30

20

10

LevelDB —#&—

_ /

//.

o

e ————

N

T~

9:1 8:2 7:3 6:4 5:5 4:6 3:7
Read/Write Ratio
WipDB 1 SifiDB £ LevelDB T

2:8

1:9

REXIO Ins RocksDB

6:4 5:5 4:6
Read/Write Ratio

37 2:8 1:9

University of Chinese Academy of Sciences

€ WipDB Throughput Retention:
 Initial retention of 0.35% 1n read-intensive conditions, dropping significantly
across all r/w ratios, maintaining just 0.15%.

@ SifrDB Throughput Retention:
* Initial retention of 46%, dropping to 31% in mixed r/w operations, recovering to
49% as write operations increase.

@ LevelDB and RocksDB Throughput Retention:
[evelDB: Starts at 53%, declines, and stabilizes around 1.5%.
*RocksDB: Starts at 36%, eventually dropping to 1%.

€ REXIO Throughput Retention:
*Drops to 40% in the most intensive 5:5 r/w condition, then increases gradually,
reaching 80%.

€ Analysis:
Intensive read operations consume more time, impacting throughput retention.
*REXIO’s decoupled design makes buffer size increases more effective compared
to LSM-based KV stores.

€ Throughput Comparison:
*REXIO starts with 80 Kops/sec in 1:9 r/w ratio and 81 Kops/sec in 9:1 w/r ratio.
*REXIQO’s absolute throughput 1s 3.4x higher than SifrDB at a 5:5 r/w ratio.

*Conclusion: REXIO’s mechanisms show superior performance, especially with large-value writes.

University of Chinese Academy of Sciences rrussnssannk

- "

“|IIII|I

	�REXIO: Indexing for Low Write Amplification by Reducing Extra I/Os in Key-Value Store under Mixed Read/Write Workloads
	幻灯片编号 2
	幻灯片编号 3
	幻灯片编号 4
	幻灯片编号 5
	幻灯片编号 6
	幻灯片编号 7
	Thank you for your listening!

